Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations.
نویسندگان
چکیده
This paper is concerned with mathematical analysis of the 'critical domain-size' problem for structured populations. Space is introduced explicitly into matrix models for stage-structured populations. Movement of individuals is described by means of a dispersal kernel. The mathematical analysis investigates conditions for existence, stability and uniqueness of equilibrium solutions as well as some bifurcation behaviors. These mathematical results are linked to species persistence or extinction in connected habitats of different sizes or fragmented habitats; hence the framework is given for application of such models to ecology. Several approximations which reduce the complexity of integrodifference equations are given. A simple example is worked out to illustrate the analytical results and to compare the behavior of the integrodifference model to that of the approximations.
منابع مشابه
Life stages: interactions and spatial patterns.
In many stage-structured species, different life stages often occupy separate spatial niches in a heterogeneous environment. Life stages of the giant flour beetle Tribolium brevicornis (Leconte), in particular adults and pupae, occupy different locations in a homogeneous habitat. This unique spatial pattern does not occur in the well-studied stored grain pests T. castaneum (Herbst) and T. confu...
متن کاملA bifurcation analysis of stage-structured density dependent integrodifference equations
Article history: Received 7 December 2010 Available online 1 October 2011 Submitted by J. Shi
متن کاملApproximating the Critical Domain Size of Integrodifference Equations
Integrodifference (IDE) models can be used to determine the critical domain size required for persistence of populations with distinct dispersal and growth phases. Using this modelling framework, we develop a novel spatially implicit approximation to the proportion of individuals lost to unfavourable habitat outside of a finite domain of favourable habitat, which consistently outperforms the mo...
متن کاملDensity-dependent dispersal in integrodifference equations.
Many species exhibit dispersal processes with positive density- dependence. We model this behavior using an integrodifference equation where the individual dispersal probability is a monotone increasing function of local density. We investigate how this dispersal probability affects the spreading speed of a single population and its ability to persist in fragmented habitats. We demonstrate that...
متن کاملDemography and Dispersal: Calculation and Sensitivity Analysis of Invasion Speed for Structured Populations
A fundamental characteristic of any biological invasion is the speed at which the geographic range of the population expands. This invasion speed is determined by both population growth and dispersal. We construct a discrete-time model for biological invasions that couples matrix population models (for population growth) with integrodifference equations (for dispersal). This model captures the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of mathematical biology
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2004